

DATASHEET | JANUARY 2024

SATCOM

Applications

- Satcom Ka-Band Antenna Signal Distribution
- Ground Terminal & Intra-Facility Links
- Site Diversity Systems
- Electronic Warfare (EW) Systems
- Broadband Delay Line and Signal Processing Systems

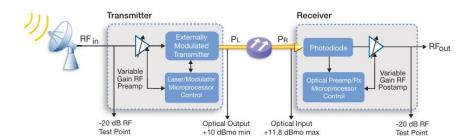
Features / Benefits

- Ka-Band Uplink and Downlink Eliminates the performance and cost penalty of block conversion
- Low RIN Source Laser Provides highdynamic-range of > 102 dB Hz^{2/3}
- Microprocesser-Based Transmitter
 Control for Laser Bias, Modulator Bias &
 Link Gain Provides consistent high
 performance operation and allows for
 modulator low-bias operation and
 SFDR > 102 dB Hz^{2/3}
- Compatible with Ortel's Modular Optiva Platform – Allows multiple format and frequency transport in a single chassis
- DWDM Operation Increases transport capacity without increasing fiber count

The Optiva OTS-2 Ka-Band transmitter and receiver are ideal to construct downlink 18.300 to 21.200 GHz and uplink 28.350 to 31.000 GHz transparent fiber optic links for antenna remoting, electronic warfare systems, broadband delay lines, signal processing systems and other high-dynamic-range applications.

Optiva satellite and microwave transmitters and receivers are SNMP SATCOM compliant. They can be housed in the same chassis and monitored by the same Network Management System (NMS) as other Optiva cards to support transport of multiple signal formats and frequency bands in a single flexible platform.

System Design


The Optiva platform includes a wide range fiber optic transport products for satellite and microwave com-

munications from 1 MHz to 40 GHz. These units can be used to construct transparent interand intra-facility links for RF and microwave signal transport, antenna remoting, electronic warfare systems and other high-dynamic-range applications.

Optiva is a completely modular, hot-swappable platform. Both 19" rack-mount and compact tabletop, or wall-mountable enclosures are available. The 3 RU 19" rack-mount, fan-cooled enclosures Model OT-CC-16F can support up to 16 insert cards and utilize two dual-redundant, hot-swappable 200 watt power supplies. The 1 RU 19" rack-mount, fan-cooled enclosure Model: OT-CC-6-1U can accommodate 6 insert cards and utilizes two hot-swappable 60 watt power supplies. Compact two-slot OT-DTCR-2 enclosures are also available that use an external wall-mount power supply.

Block Diagram

© 2024 ORTEL Corporation | REV 2024.01

sales@ortel.com | www.ortel.com

DATASHEET | JANUARY 2024

SATCOM

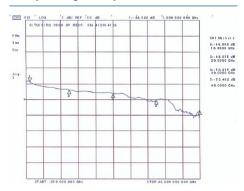
Performance Highlights

Parameter	Min	Typical	Max	Units
Frequency Range	18.300	-	21.200	GHz
	28.350	-	31.000	GHz
RF Input Power	-	-	5* -15 [^]	dBm
Wavelength	-	1550	-	nm
Optical Output Power	9	10	11	dBmo
Operating Temperature Range	-10	-	50	°C

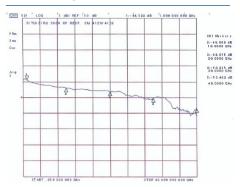
^{*}Tx: RF amp 15 dB gain, attenuation range 0 to 15 dB ^Tx: RF amp 35 dB gain, attenuation range 0 to 15 dB

Absolute Maximum Ratings

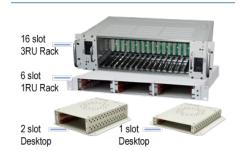
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the datasheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.


Parameter	Symbol	Min	Max	Units
Operating Temperature	T _{OP}	-20	60	°C
Storage Temperature	T _{STG}	-40	85	°C
RF Input	S _{in}	NA	5* -15^	dBm

^{*}Tx: RF amp 15 dB gain ^Tx: RF amp 35 dB gain


Environmental Specifications

Parameter	Symbol	Min	Max	Units
Operating Temperature	T _{OP}	-10	50	°C
Operating Humidity, Maximum Non-Condensing			95%	
Operating Altitude, Above Sea Level			6000 1828.8	ft m
Storage Temperature	T _{STG}	-40	70	°C
Storage Humidity, Maximum Non-Condensing			95%	
Storage Altitude, Above Sea Level			50,000 15,240	ft m


Typical Ka-Band Downlink S21 Frequency Response

Typical Ka-Band Uplink S21 Frequency Response

Enclosure Options

DATASHEET | JANUARY 2024

SATCOM

Transmitter & Receiver Optical Characteristics

Parameter	Symbol	Condition	Min	Typical	Max	Units
Wavelength	λ	-	1530	1550	1562	nm
Optical Output Power	PL	-	9	10	11	dBmo
Connector Return Loss	-	-	40	-	-	dB
Optical Connector Type	-	SC/APC	-	-	-	-
Receiver Optical Input Power	Pin	-	-	-	+10	dBmo
Receiver Responsivity	-	-	0.5	-	-	AW

Note: In order to prevent reflection-induced distortion degradation, the laser should be connected to an optical cable having a return loss of at least 55 dB for discrete reflections and 30 dB for distributed reflections.

Ka-Band Transmitter & Receiver RF Characteristics

Parameter	Condition	Min	Typical	Max	Units
Operational Bandwidth	-	18.300	-	21.200	GHz
	-	28.350	-	31.000	GHz
RF Input Impedance	-	-	50	-	Ω
RF Return Loss	-	-	-	-15	dB
RF Connectors	SMA Female				
RF Test Point Reference Value, Relative to RF input or RF output*	-	-18	-20	-22	dB

^{*}Test point performance beyond the stated frequency range is provided; only the test point reference value tolerance may increase beyond the above stated +/- 1 dB

DC Power Consumption - Max

Module Type	Input Voltage (VDC)	Max Current (@+70°C)
Transmitter	+12	1 A
Receiver	+12	750 mA

DATASHEET | JANUARY 2024

SATCOM

Link Performance - Ka-Band Downlink

Parameter	Symbol	Condition	Min	Typical	Max	Units
RF Bandwidth	-	-	18.300	-	21.200	GHz
Link Gain (+0 dBmo Rx optical input) ^{★Λ}	G G	@ 18.300 GHz @ 21.200 GHz	-27 -27	-23 -23	- -	dB dB
Link Gain (+10 dBmo Rx optical input)*^	G G	@ 18.300 GHz @ 21.200 GHz	-7 -7	-3 -3	-	dB dB
Noise Figure (+0 dBmo Rx optical input) ^A	NF NF	@ 18.300 GHz @ 21.200 GHz	25 25	-	-	dB dB
Noise Figure (+10 dBmo Rx optical input) ^A	NF NF	@ 18.300 GHz @ 21.200 GHz	15 15	- -	-	dB dB
Input IP3 ^A	IIP3 IIP3	@ 18.300 GHz @ 21.200 GHz	-7 -6	- -	- -	dBm dBm
Spurious Free Dynamic Range [^]	SFDR SFDR	@ 0 dBmo Rx Optical Input @ +10 dBmo Rx Optical Input	99 103	-	-	dB-Hz ^{2/3} dB-Hz ^{2/3}
Gain Variation	-	Any 36 MHz Any 500 MHz	-	-	0.5 1.5	dB dB

Link Performance - Ka-Band Uplink

Parameter	Symbol	Condition	Min	Typical	Max	Units
RF Bandwidth	-	-	28.350	-	31.000	GHz
Link Gain (+0 dBmo Rx optical input)*	G G	@ 28.350 GHz @ 31.000 GHz	-30 -30	-26 -26	-	dB dB
Link Gain (+10 dBmo Rx optical input)*	G G	@ 28.350 GHz @ 31.000 GHz	-10 -10	-6 -6	- -	dB dB
Noise Figure (+0 dBmo Rx optical input)	NF NF	@ 28.350 GHz @ 31.000 GHz	14 14	- -	- -	dB dB
Noise Figure (+10 dBmo Rx optical input)	NF NF	@ 28.350 GHz @ 31.000 GHz	9 9	- -	-	dB dB
Input IP3	IIP3 IIP3	@ 28.350 GHz @ 31.000 GHz	-7 -6	-	-	dBm dBm
Spurious Free Dynamic Range	SFDR SFDR	@ 0 dBmo Rx Optical Input @ +8 dBmo Rx Optical Input	99 103	- -	- -	dB-Hz ^{2/3} dB-Hz ^{2/3}
Gain Variation	- -	Any 36 MHz Any 500 MHz	- -	- -	0.5 1.5	dB dB

^{*}Receiver RF output will change 2 dB for each 1 dB of Rx optical input power level change

^{*}Receiver RF output will change 2 dB for each 1 dB of Rx optical input power level change
^Performance based on OTS-2T/K5 with RF Amp gain of 35 dB, OTS-2R/K5 with RF Amp gain of 15 dB

DATASHEET | JANUARY 2024

SATCOM

Ordering Information: Transmitter

Transmitter

OTS-2T / K5-VVVV-WW-10-XX-12-YY-Z

When ordering replace "VVVV" with one of the Ka-Band Frequency Options

When ordering replace "WW" with one of the ITU Channel Options

When ordering replace "XX" with one of the Optical Connector Options

When ordering replace "YY" with one of the Variable Gain RF Amplifier Options

When ordering replace "Z" with one of the Enclosure Options

Ka-Band Frequency Options (GHz) "VVVV"	ITU Channel Options (THz / nm) "WW"	Optical Connector Options "XX"	Variable Gain RF Amplifier Options (dB) "YY"	Enclosure Options "Z"
1821 = 18.300 – 21.200 GHz Downlink	Standard: 00 = non-ITU: 1520-1580 nm	SA = SC / APC FA = FC / APC EA = E2000 / APC	15 = 15 dB 35 = 35 dB	1 = Optiva Indoor Rack- Mount Installation
2831 = 28.350 – 31.000 GHz Uplink	Optional: 22 = 192.2 THz/1559.79 nm 23 = 192.3 THz/1558.98 nm 24 = 192.4 THz/1558.17 nm 25 = 192.5 THz/1557.36 nm 26 = 192.6 THz/1556.56 nm 27 = 192.7 THz/1555.75 nm 28 = 192.8 THz/1555.49 nm 29 = 192.9 THz/1554.13 nm 30 = 193.1 THz/1553.33 nm 31 = 193.1 THz/1550.25 nm 32 = 193.2 THz/1551.72 nm 33 = 193.3 THz/1550.92 nm 34 = 193.4 THz/1550.12 nm 35 = 193.5 THz/1549.32 nm 36 = 193.6 THz/1548.51 nm 37 = 193.7 THz/1547.72 nm			2 = Optiva Outdoor MiniHub Installation

Ordering Information: Receiver

Receiver	
OTS-2R / K5-WWWW-10-WW-00-2-YY-Z	

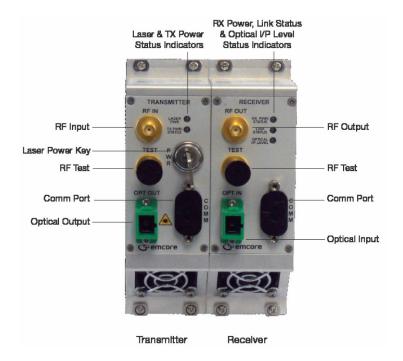
When ordering replace "WWWW" with one of the Ka-Band Frequency Options

When ordering replace "XX" with one of the Optical Connector Options

When ordering replace "YY" with one of the Variable Gain RF Amplifier Options

When ordering replace "Z" with one of the Enclosure Options

Ka-Band Frequency Options (GHz) "WWWW"	Optical Connector Options "XX"	Variable Gain RF Amplifier Options (dB) "YY"	Enclosure Options "Z"
1821 = 18.300 – 21.200 GHz Downlink	SA = SC / APC FA = FC / APC	15 = 15 dB	1 = Optiva Indoor Rack- Mount Installation
	EA = E2000 / APC	35 = 35 dB	
2831 = 28.350 – 31.000 GHz Uplink			2 = Optiva Outdoor MiniHub Installation



DATASHEET | JANUARY 2024

SATCOM

Mechanical Configuration

Each Transmitter and Receiver module occupies two slots in the Ortel Optiva Chassis.

Laser Safety

This product meets the appropriate standard in Title 21 of the Code of Federal Regulations (CFR). FDA/CDRH Class 1M laser product. All versions of this laser are Class 1M laser product, tested according to IEC 60825-1:2007 / EN 60825-1:2007. An additional warning for Class 1M laser products. For diverging beams, this warning shall state that viewing the laser output with certain optical instruments (for example: eye loupes, magnifiers, and microscopes) within a distance of 100 mm may pose an eye hazard. For collimated beams, this warning shall state that viewing the laser output with certain instruments designed for use at a distance (for example: telescopes and binoculars) may pose an eye hazard.

Wavelength = $1.3/1.5 \mu m$.

Maximum power = 30 mW.

^{*}Caution - Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

^{*}IEC is a registered trademark of the International Electrotechnical Commision.